

Study 1 Lightweight Materials

OBJECTIVES

- Identify current radiator coatings and structural materials used on space hardware
- Identify cutting edge materials in these areas
- Identify tests and simulations needed to increase the CRL of newer materials
- Support work needed with documented references and contacts

CONCLUSIONS

- Structural Materials
 - Moving steadily from metals to composites
 - ~15 years from cradle to flight for new materials
 - A defined application ⇒ best chance of success for of new material
 - Significant weight savings available in secondary structures – lower requirement hurdles
 - Decrease prototype & manufacturing costs key for greater composite use
 - Metal Matrix Composites are underutilized
 - Carbon nanotube composites show great promise
- Radiator Materials
 - Dust management is key to Lunar applications

FOCUS AREAS

- Structural Materials
 - Metals
 - Metallic based composites
 - Polymer / carbon based composites
 - Carbon nanotube composites
- Radiator Coatings
 - Low temperature coatings
 - High temperature coatings

RECOMMENDATIONS

- 1. Use Al-Be alloys in manned environment by resolving health issues
- 2. Identify candidate hardware for MMCs
- Assess potential development of Al laminate using XRF1
- 4. Assess application of ALONtm for surface suit face shields
- Assess improved FRPC matrix behavior through small % addition of carbon nanotubes
- 6. Develop new radiator coating
- Develop Lunar/Mars dust removal device compatible with coating